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a b s t r a c t

Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has

emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels,

biopolymers and other commercially useful metabolites. We present a pathway construction algorithm

for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive

exploration, we investigate probabilistic selection of reactions to construct the pathways. Three

different selection schemes are investigated for the selection of reactions: high metabolite connectivity,

low connectivity and uniformly random. For all case studies, which involved a diverse set of target

metabolites, the uniformly random selection scheme resulted in the highest average maximum yield.

When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic

algorithm returned nearly identical distributions of yields, while requiring far less computing time

(minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the

literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design

of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transforma-

tions in nature.

& 2011 Elsevier Inc. All rights reserved.
1. Introduction

Metabolic engineering of non-native synthesis pathways in micro-
bial hosts has shown promise in the production or overproduction of
commercially useful biomolecules, including polyesters (Aldor and
Keasling, 2003), building blocks for industrial polymers (Nakamura
and Whited, 2003), biofuels (Steen et al., 2010), and therapeutic
natural products derived from isoprenoids (Martin et al., 2003; Pitera
et al., 2007; Watts et al., 2005), polyketides (Peiru et al., 2005;
Pfeifer et al., 2001), and non-ribosomal peptides (Watts et al., 2005).
Isolation of these molecules from naturally occurring organisms
generally suffers from low yield and can place a large environmental
burden (Pitera et al., 2007). Soil dwelling microorganisms that harbor
the biosynthetic enzymes for isoprenoids, polyketides and other
natural product molecules typically exhibit slow growth compared
to industrial workhorse organisms such as Escherichia coli and yeast.
One promising way to address yield and growth limitations is to
harness the biosynthetic capability of niche organisms into techni-
cally amenable, fast growing organisms (Pfeifer and Khosla, 2001).

In some cases, a choice for the synthesis pathway may be
obvious. For example, there is only one known pathway for
biosynthesis of 1,3-propanediol from glycerol (Nakamura and
ll rights reserved.
Whited, 2003). This pathway consists of two reactions, each
catalyzed by a singular enzyme. More generally, the number of
alternative pathways for a given product may be too large for
experimental exploration, especially if the goal is to exploit the
diversity of metabolic enzymes across many different organisms.
To date, more than 1000 prokaryotic genomes have been fully
sequenced and annotated. Partial or draft genomes are available
for more than 6000 species. The total number of reactions listed
in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000; Kanehisa et al., 2006, 2010) currently
exceeds 8000. In this light, computational approaches are war-
ranted to analyze the growing number of possible metabolic and
biosynthetic enzyme combinations as candidate pathways for
heterologous synthesis of biomolecules.

Due to the combinatorial nature of the problem, an exhaustive
search for candidate pathways is impractical even for computa-
tional approaches. To routinely analyze ever-growing and con-
tinuously updated genome-scale databases, an effective search
strategy needs to address several issues. Enzymes need to be
selected from a large, multi-organism database such as KEGG,
MetaCyc (Caspi et al., 2008) or SEED (Overbeek et al., 2005) to
form a logical reaction sequence, mapping the final product
molecule to one or more reactant metabolites in the host organ-
ism. This selection process needs to take into account not only the
main reactants, but also reducing equivalents and other cofactors.
In the likely event that a large number of candidate pathways

www.elsevier.com/locate/ymben
dx.doi.org/10.1016/j.ymben.2011.01.006
mailto:soha@cs.tufts.edu
dx.doi.org/10.1016/j.ymben.2011.01.006


M. Yousofshahi et al. / Metabolic Engineering 13 (2011) 435–444436
have been identified, the computational analysis needs to evalu-
ate these pathway based on a performance metric such as
maximal predicted yield. The evaluation needs to also assess
whether the introduction of the synthesis pathway will nega-
tively impact the host organism’s capacity for balanced growth
(Feist et al., 2010).

Over the last several years, a number of heuristic approaches
have been developed to predict novel pathways for degradation of
xenobiotics (Moriya et al., 2010) or biosynthesis of native and
non-native compounds (McShan et al., 2003; Moriya et al., 2010;
Pharkya et al., 2004; Pitkänen et al., 2009). One such approach,
PathMiner, seeks to build pathways that minimize the biochem-
ical transformation cost (McShan et al., 2003). This heuristic
favors reactions involving the addition of smaller functional
groups, which can select against canonical modifications such as
phosphorylation. PathPred is another method to construct plau-
sible reaction pathways based on chemical structure transforma-
tion patterns of small molecules (Moriya et al., 2010). PathPred
specifically exploits the KEGG RPAIR database, which contains
transformation patterns for substrate–product pairs (reactant
pairs) of known enzymatic reactions. The patterns are described
by atom type changes at the reaction center atom and its
neighboring atoms. A key advantage of PathPred is that it
generates plausible pathways even when no matching compound
is found for the queried molecule by utilizing pattern matches
reflecting generalized reactions shared among structurally related
compounds. The drawback is that the patterns need to be
manually cured. OptStrain uses mixed integer programming to
identify stoichiometrically balanced pathways by adding or delet-
ing reactions to the host metabolic network (Pharkya et al., 2004).
A key advantage of this approach is to couple the selection of
reactions with the ranking of the synthesis pathways in terms of
theoretical yields. Success of the optimization however critically
depends on thoroughly pre-processing the database, which
remains a non-trivial task.

There currently is a lack of data and consensus on the best
pathway scoring methods. The number of pathway steps does not
necessarily correlate with yield or the implementation practical-
ity (Martin et al., 2009). Another metric for ranking the non-
native pathway is metabolic burden which computes the reduc-
tion in the growth rate as a result of added reactions (Rodrigo
et al., 2008). Another ranking strategy is the thermodynamic
feasibility which tries to compute the change in the Gibbs free
energy of the reaction along the pathways by using a group
contribution method (Hatzimanikatis et al., 2005).

We present a novel method for constructing synthesis path-
ways using a graph-based probabilistic-search approach. Our
approach is based on searching the KEGG database for pathways
and using flux balance analysis (FBA) (Varma and Palsson, 1994)
to rank the constructed pathways. The main challenge in this
approach is to avoid exhaustive enumeration of all possible
Fig. 1. Schematic illustration of the probabilistic search. The dashed and solid lines s

terminates when a metabolite found that is native to the host network: (a) all possible re

(b) only one reaction is explored in depth-first fashion and (c) recursive exploration te
pathways as it yields an intractable number of pathways. Accord-
ingly, we propose a probabilistic pathway construction method
and we investigate three different selection criteria to mine the
KEGG database in search of a synthesis pathway.
2. Methods

2.1. Pathway construction

We develop a graph-based, probabilistic search technique of the
KEGG database to identify non-native synthesis pathways for a given
product metabolite. We define a non-native synthesis pathway as a
sequence of non-native reactions beginning with any native meta-
bolite and ending with the specified product metabolite. The
product metabolite may or may not be a native metabolite. Path-
ways are constructed as a graph, specifically a tree, by adding
metabolite nodes and reaction edges selected from the KEGG
database. The KEGG database was chosen for its breadth of coverage
of metabolic pathways across many organisms.

Tree construction proceeds recursively, starting from the
target metabolite, i.e. synthesis product, as the root of the tree
(Fig. 1). A single reaction is selected from a list of candidate
reactions in the KEGG database that involve the target metabolite
as a main product. Selection occurs probabilistically based on a
weighting scheme determined by the connectivity of the candi-
date reactions’ metabolites (see Section 2.2). The type of selection
scheme is passed to the algorithm as a free parameter. The
selected reaction is then added to the tree and represented by
an edge. This edge expands the tree by attaching new nodes
representing the reactant metabolites and cofactors of the
selected reaction. The construction thus proceeds in a depth-first
fashion. Each of these nodes is a new root for the recursion, unless
the corresponding metabolite or cofactor is already present in the
host organism or was previously added to the tree. Details of the
algorithm are provided in Fig. 2.

Because there is a practical limit to the number of hetero-
logous genes that can be inserted into a typical host organism
such as E. coli (Peiru et al., 2005), we set a limit on the number of
reactions that can be used to construct a pathway. The length
limit is thus used to obtain candidate pathways of practical
length, rather than to rank-order or otherwise evaluate pathway
quality. In the present study, the length limit was set to 23
reactions, which reflects state-of-the-art with respect to the
number of simultaneous gene insertions (Peiru et al., 2005).
When the addition of a reaction to the tree violates this limit,
the search algorithm backtracks and proceeds by adding to the
tree another reaction that has not been previously explored,
effectively exploring an alternative pathway. If none of these
alternative routes satisfy the pathway length limit, the algorithm
further backtracks and continues from there. The algorithm
Host

how the possible routes and selected reactions, respectively. The tree expansion

action choices to generate a target metabolite, two reactions away from the target;

rminates at a metabolite within the host network.



Fig. 2. Pseudo-code for the probabilistic pathway construction algorithm. Pathways are constructed recursively starting from the target metabolite which is assigned as

the root node of the tree. The tree is expanded at each recursion by adding an edge which represents a randomly selected reaction among all candidate reactions linked to

the nodal metabolite. The constructed pathway is evaluated by calculating the maximum yield of the target metabolite using flux balance analysis.
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finishes when all permitted-length branches of the tree terminate
in a metabolite that is native to the host organism. Due to the
probabilistic nature of selecting the reactions, the completed tree
does not exhaustively enumerate all possible pathways. Rather,
each tree represents a single pathway from the target metabolite
to one or more required reactant metabolites (including cofac-
tors) that are native to the host organism. Therefore, the search is
iterated many times to explore a diverse number of possible
pathways.

As previously observed (Blum and Kohlbacher, 2008), a small
subset of the reactions in the KEGG database are annotated as
‘unclear’ and/or lack corresponding enzyme commission number
entries. Such reactions were excluded from the search.

To evaluate the effectiveness of our probabilistic pathway
construction approach, we compare the probabilistic searches
against an exhaustive search, which constructs all possible path-
ways in the form of a single tree. Tree construction proceeds
recursively, similar to the probabilistic search, except that the
algorithm adds all of the possible pathways. The output of the
search is thus a set of pathways, rather than a single pathway,
that satisfies the length limit and terminates at a metabolite in
the host. For the tree shown in Fig. 1a, the exhaustive search
recursively explores all possible additions to the tree. Due to the
prohibitive computational cost associated with exhaustive search,
the pathway length limit was set to 10 reactions (as opposed to
23, which is the limit set for the probabilistic search).

2.2. Probabilistic reaction selection

We explore three different selection schemes based on metabo-
lite connectivity of candidate reactions: high-degree connectivity,
low-degree connectivity and uniform. Here, degree connectivity
refers to the number of reactions in which a metabolite participates.
The results of the three different selection schemes are compared
based on the likelihood of identifying the pathway with the highest
predicted yield.

2.2.1. High connectivity

In this scheme, we use weighted probabilities to bias the
selection in favor of reactions involving high-degree metabolites.
It has been observed that scale-free networks include hub nodes
of high degree through which lower degree nodes connect
(Barabási and Albert, 1999). For example, if A, B and C are three
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metabolites with A having a high-degree connectivity and B and C
having low degrees of connectivity, a path from B to C is likely to
proceed through A rather than directly. To verify that the
metabolites in the KEGG multi-organism database constitute
the nodes of a scale-free network, we characterized the degree
distribution by counting the number of times each metabolite
participates in a distinct reaction. This analysis did not consider
the directionality of the reactions, as most of the reactions are
reversible. A log-scale histogram (Fig. 3) showed that the degree
distribution indeed followed a power law similar to other
evolved, scale-free networks (Barabasi, 2009) with a scaling
exponent value of �2.04. Motivated by this connectivity property
of the KEGG database, we weighted the selection probabilities of
candidate reactions to favor pathways whose intermediates are
hub metabolites.

The probability of selecting a reaction is proportional to its
relative weight normalized by the sum of the weights of all
reactions. Mathematically put, Probðselecting RiÞ ¼WRi

=
P

WRj
. As

an example, consider the hypothetical reactions shown in Fig. 4.
Metabolites B through E have the following degree connectivity
values: deg(B)¼4, deg(C)¼3, deg(D)¼2 and deg(E)¼1. The
weights for the reactions are WR1¼min(4, 3)¼3, WR2¼2 and
WR3¼min(4, 1)¼1. In this example, the probabilities of selecting
reactions 1, 2 and 3 are 0.5, 0.33 and 0.17, respectively.
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Fig. 3. Degree connectivity distribution of metabolites in the KEGG database

exhibiting a power-law distribution in which the probability of finding a

metabolite with connectivity k is proportional to k�2.04. The blue circles depict

the actual distribution and the red line represents the fitted power-law

distribution.
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Fig. 4. Metabolite connectivity-based weighting scheme. The nodes and edges

represent metabolites and reactions, respectively. The three reactions R1, R2 and

R3 producing the metabolite A are defined as follows. R1: A3B+C, R2: A3D and

R3: A3B+E. Based on these definitions, the algorithm assigns weights of 3, 2 and

1 to reactions R1, R2 and R3, in order.
It should be noted that a clear distinction between cofactors
and main reactants is not always possible without manually
inspecting the reaction definition. One way to discriminate
cofactors is based on the degree connectivity, which is generally
higher than other metabolites. Therefore, we determine the
weight of a reaction based on the metabolite with the lowest
degree connectivity as calculated by the ‘min’ function in the
formulas above. Also, all of the metabolites in a reaction are and-
related, i.e. different pathway branches should be constructed for
all of them.

2.2.2. Low connectivity

In this scheme, we bias the selection in favor of reactions
involving low-degree metabolites. The idea of identifying path-
ways using low-connectivity metabolites has been used pre-
viously to infer meaningful pathways in biochemical networks.
One such pathway identification algorithm is Metabolic PathFind-
ing, which first assigns metabolites a weight equal to their
connectivity and then performs a search for the path with the
smallest cumulative weight, thus reducing the likelihood of
including currency metabolites such as ATP or H2O (Croes et al.,
2005). Another algorithm, MetaRoute, assigns a modified weight
to each reaction based on metabolite degree and then performs a
weighted path search to compute the first k-shortest paths
between two given metabolites (Blum and Kohlbacher, 2008).
Metabolic PathFinding, MetaRoute, and path-pruning methods
(Gerlee et al., 2009) are motivated by the idea that low-connec-
tivity metabolites define the major pathways of carbon (or
nitrogen) transfer in biochemical networks. In the present study,
the low-connectivity selection probabilities for the reactions are
calculated similar to the high-connectivity scheme, except that
the inverse of the smallest metabolite degree in a reaction is used
as the weight for the reaction.

2.2.3. Uniform

Finally, we investigate a selection scheme where each reaction
is assigned the same weight. This scheme does not favor either
high- or low-degree metabolites as pathway intermediates, and
thus should return the most diverse set of pathways.

2.3. Yield calculation

We evaluate each pathway by calculating the maximum yield
of the desired product, subject to constraints, using flux balance
analysis (FBA) (Becker et al., 2007). In the present study, the
maximum yield is used as an overall performance metric of the
entire synthesis pathway. The yield also takes into account
several (but not all) important biochemical and biophysical
constraints of the host organism. Indeed, other pathway con-
struction algorithms have relied on metrics such as thermody-
namic favorability and structural similarity of reaction steps
(Cho et al., 2010) to prune the search space. In the present study,
the focus is on exploring the diversity of possible synthesis
pathways, which proceeds independently from the evaluation of
the pathways.

As the base model for FBA, we used a genome-scale model of
E. coli metabolism (iAF1260) (Feist et al., 2007). Reactions selected
by the search algorithm to constitute a plausible pathway were
then added to the base model to generate the modified strain
model. Upper and lower flux bounds for the added reactions were
set to 1000 and �1000 mmol/gDW/h, respectively. All other
constraints were kept at the same default values of the base model
as described in Feist et al. (2007). In brief, the glucose uptake upper
and lower bounds were 1000 and �8 mmol/gDW/h, respectively,
oxygen uptake bounds were 1000 and �18.5 mmol/gDW/h and
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the ATP maintenance requirement was set to 8.39 mmol/gDW/h
(Feist et al., 2007). The FBA objective was to maximize the flux
forming the desired product subject to the constraint that the
modified host strain produces at least 80% of the wild-type
biomass yield. Pathways leading to zero product fluxes were
considered non-viable. Viable pathways were rank ordered
according to the maximum product yield. For comparisons with
literature values, product yields were expressed as fluxes normal-
ized by the corresponding glucose uptake flux or dry cell weight
(DCW).
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Fig. 5. Dependence of the overall and average maximum yields on the number of

iterations for the fatty acid methyl ester test case. At each iteration number, the

probabilistic search was repeated 500 times. The overall maximum refers to the

largest of the 500 maximum yields for the iteration number calculated using flux

balance analysis (FBA). The average maximum yield refers to the arithmetic mean

of the 500 FBA yields.
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3. Results and discussion

To analyze the effectiveness of our algorithm, we examined
the synthesis of several native and non-native metabolites, which
have previously been identified as commercially useful targets for
overproduction, using E. coli as the host organism. Moreover,
experimentally determined yield or titer data were available in
the published literature, thus providing references for compar-
ison. The test compounds belonged to four groups: precursors for
natural products with therapeutic activity (isopentenyl dipho-
sphate and taxa-4,11-diene); alcohols used as building blocks for
polymer synthesis and other commercial applications (1,3-pro-
panediol and 2,3-butanediol); a complex carbohydrate precursor
for value added chemicals (myo-inositol); and lipid biofuels (fatty
acid methyl and ethyl esters and triacylglycerol).

The analysis compared the performance of the probabilistic
search algorithm for different weighting schemes (uniform, high
connectivity, and low connectivity) based on the average yield
(defined as the average value of yields obtained from repeated
runs) of the synthesis pathways. The probabilistic search with
uniform weighting was also compared against an exhaustive
search in terms of sampling efficiency as reflected in the yield
diversity of the pathways. This comparison also involved an
analysis of the computational cost, which showed that the
runtime of the exhaustive search increases exponentially with
respect to the number of reactions in the pathway, whereas
the runtime of the probabilistic search scales linearly with the
number of reaction in the database. Finally, we compared the
yield results calculated by the probabilistic and exhaustive
searches against experimentally obtained values reported in the
literature.
Number of iterations

Fig. 6. Average yield (solid line) and standard deviation (error bars) vs. number of

iterations for the fatty acid methyl ester test case.
3.1. Yield results for different weighting schemes

Due to the probabilistic nature of our algorithms, meaningful
interpretation of the search requires a large number of iterations.
To estimate the number of iterations needed to identify viable,
high-yield pathways, we executed the probabilistic search for
varying numbers of iterations ranging from 100 to 1500 and
recorded the maximum product yield obtained for each iteration
number. To also determine an average yield, we repeated this
process 500 times for each iteration number. The results of this
analysis for fatty acid methyl esters are shown in Fig. 5. The
overall maximum product yield remained constant for all itera-
tion numbers. The average maximum product yield increased
steadily with the iteration number, and gradually leveled off,
reaching a plateau around iteration number 1500. Similar trends
were observed for all other test cases (data not shown). These
trends suggest that the likelihood of finding a pathway with the
overall maximum yield increases with the iteration number, but
only up to a point. Once a sufficiently large iteration number has
been reached, the likelihood of finding a pathway with the overall
maximum yield remains essentially unchanged.
In addition to the overall maximum yield, we also recorded the
standard deviation of the maximum yields for the 500 repeats at
the various iteration numbers. To more clearly visualize the trend,
we plotted the standard deviations for iteration numbers up to
4000 (Fig. 6). The decreasing standard deviations suggest that
increasing the iteration number improves the predictability of the
search outcomes resulting from repeated runs. Given that we
calculate and record the maximum yield for each run in a batch of
repeats, the convergence in yield trends toward the overall
maximum.

To examine the impact of the weighting scheme on search
performance, we repeated the probabilistic search with uniform,
low-connectivity and high-connectivity selection of reactions.
Comparisons of overall and average maximum yields for fatty
acid ethyl esters (FAEEs) are shown in Fig. 7. The uniform
weighting scheme consistently outperformed the connectivity-
based weighting schemes, as it needed fewer iterations to identify
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Fig. 7. Yield comparisons for fatty acid ethyl esters obtained using connectivity-

based and uniform weighting schemes.

Table 1
Effect of the weighting scheme on search performance.

Metabolite name Weighting scheme Normalized average
maximum yield

Isopentenyl diphosphate Uniform 1

High-connectivity 1

Low-connectivity 1

myo-Inositol Uniform 1

High-connectivity 1

Low-connectivity 1

Taxa-4(5),11(12)-diene Uniform 1

High-connectivity 1

Low-connectivity 1

1,3-Propanediol Uniform 1

High-connectivity 1

Low-connectivity 1

(R,R)-2,3-Butanediol Uniform 1

High-connectivity 1

Low-connectivity 1

Fatty acid ethyl esters Uniform 0.63

High-connectivity 0.60

Low-connectivity 0.60

Fatty acid methyl esters Uniform 0.84

High-connectivity 0.77

Low-connectivity 0.84

Triacylglycerol Uniform 0.55

High-connectivity 0.50

Low-connectivity 0.41

The normalized average maximum yield was calculated by dividing the average

maximum yield with the overall maximum yield. Average and overall maximum

yields were determined for runs of 1000 iterations repeated 500 times as

described in the text.
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viable, high-yield pathways. This improvement in the search
performance suggested that the high-yield pathways involve
intermediates with both high and low metabolite connectivity.
This indeed was the case for fatty acid ethyl esters. The pathway
with the highest maximum product yield (3.58 mmol/gDW/h)
was identified only when the reactions were selected based on a
uniformly random probability. The connectivity values of meta-
bolites in the reaction sequence for this pathway were 3, 8, 6, 44,
7, 24, 11, 22, 7 and 8, in order. The maximum product yield
calculated using the high-connectivity weighting scheme was
3.37 mmol/gDW/h. The metabolite connectivity values for this
reaction sequence were 3, 8, 6, 44, 7, 24, 11, 22 and 12, in order,
differing only slightly from the higher yield pathway at the end of
sequence. As a consequence of its bias for reactions involving
high-degree metabolites (in this case, bias for the reaction
involving a product with degree 12 over degree 7) the high-
connectivity weighting scheme favors the lower yield sequence,
whereas the uniform weighting scheme is equally likely to select
either sequence.

Similar results were obtained for triacylglycerol, with greater
average maximum yields calculated by the uniform weighting
scheme compared to the connectivity weighting schemes
(Supplementary Fig. 13). In the case of fatty acid methyl esters,
the results of the low-connectivity weighting method were similar
to those of the uniform weighting method (Supplementary Fig. 12),
suggesting that there are some highest-yielding pathways
(1.065 mmol/gDW/h) which proceed through metabolites with
low-connectivity values. Since the uniform probabilistic method
is able to find not only the pathways found by the low-connectivity
method but also other pathways with the same yield, which
otherwise cannot be identified using low-connectivity weighting
due to some high-connectivity metabolites in them, uniform
probabilistic method outperforms the low-connectivity probabil-
istic search in this case. One possible reason the uniform weighting
scheme outperforms the connectivity-based schemes could be due
to interactions with the host metabolic network. Integrating a
high-connectivity pathway with the host could subject many
native pathways to competition with the non-native pathway.
Likewise, a pathway with low-connectivity metabolites could add
to the scarcity of metabolites with one or few native routes of
production.

The three weighting schemes returned similar performances
for all other test cases (Table 1 and Supplementary Figs. 7–11),
where the synthesis pathways did not exhibit significant varia-
tions in the obtained yield.
3.2. Sampling efficiency

For every test case, the probabilistic search with the uniform
weighting scheme identified viable synthesis pathways support-
ing a non-zero yield of the target product and at least 80% of the
maximum wild-type biomass flux. A summary of the search
results is shown in Table 2. In general, the exhaustive search
returned a greater number of pathways than the probabilistic
search, despite the lower length limit (10 vs. 23 reactions).
Equally small numbers of pathways were identified for taxadiene
and 1,3-propanediol (2 and 1, respectively), presumably reflecting
the involvement of singular reactions. In the cases of isopentenyl
diphosphate (IPP) and myo-inositol, the number of pathways
identified by the probabilistic search was greater than the
exhaustive search. In the cases of the lipids, the exhaustive search
generated a larger number of pathways than the probabilistic
search, with the fold differences in the number of pathways
ranging from 30 to 58.

Despite the differences in the total number of pathways,
the maximal yields calculated by the probabilistic (uniform
weighting) and exhaustive searches were identical in all test
cases, except for fatty acid methyl esters, where the difference
was less than 1%.

For the sake of completeness, we also compared the results
obtained from the uniform probabilistic and exhaustive search
with length limit of 10 reactions (Supplementary Table 1). For
some of the test cases, the number of identified pathways using
the probabilistic method decreased. However, the maximum
calculated fluxes were the same, because the search found



Table 2
Summary of search results obtained using uniform probabilistic and exhaustive methods.

Metabolite
name

Native yield/rate Method No. of
pathways

Max. yield/rate Pathway lengths
(pathways with yields
larger than 95% of the
max. yield )

Isopentenyl

diphosphatea

301.13 mg/gDW/h Uniform probabilistic search 11 314.24 mg/gDW/h 4, 5, 8, 10, 19
Exhaustive search 9 314.24 mg/gDW/h 4, 5, 8, 10

Literature NA 27.4 g/L amorphadiene

(Newman et al., 2006)

NA

(1.95 mg/gDW/h)

Myo-inositolb 0 mol/molglucose Uniform probabilistic search 71 0.2 g/g glucose 2, 7, 8, 9, 10, 11, 13

Exhaustive search 42 0.2 g/g glucose 2, 7, 8, 9, 10

Literature NA 0.23 g/L (Moon et al., 2009) NA

(0.08 g/g glucose)

Taxadienec Non-native Uniform probabilistic search 2 0.06 g/g glucose 2, 5

Exhaustive search 2 0.06 g/g glucose 2, 5

Literature NA 1.3 mg/L (Huang et al., 2001) NA

(0.06 mg/g glucose)

1,3-Propanediol Non-native Uniform probabilistic search 1 2.19 mmol/gDW/h 2

Exhaustive search 1 2.19 mmol/gDW/h 2

Literature NA 2.3 mmol/gDW/h (Burgard et al.,

2003)

NA

2,3-Butanediol Non-native Uniform probabilistic search 9 0.11 g/g glucose 2, 3, 4

Exhaustive search 9 0.11 g/g glucose 2, 3, 4

Literature NA 0.31 g/g glucose (Yan et al., 2009) NA

Fatty acid ethyl

estersd

Non-native Uniform probabilistic search 19 3.58 mmol/gDW/h 8, 9, 10, 11
Exhaustive search 1092 3.58 mmol/gDW/h 8, 9, 10

Literature NA 647 mg/L (Steen et al., 2010) NA

(0.34 g/g glucose)

Fatty acid methyl

esterse

Non-native Uniform probabilistic search 45 1.07 mmol/gDW/h 7, 8, 9
Exhaustive search 1353 1.08 mmol/gDW/h 7, 8, 9

Literature NA 0.3 g/gDW (Jakobsen et al., 2008) NA

Triacylglycerol Non-native Uniform probabilistic search 51 1.65 mmol/gDW/h 8, 9

Exhaustive search 2900 1.65 mmol/gDW/h 8, 9

Literature NA 0.06 mol/mol glucose (Famili and

Schilling, 2006)

NA

For comparisons with FBA calculations, the reported titer values were converted as follows:
aIPP: (27.4 g/L/88 gDW/L)/160 h¼1.95 mg/gDW/h.
bmyo-Inositol: 10�7 g/L¼3 g/L (glucose consumed); 0.23 g/L/3 g/L¼0.08 g/g glucose.
cTaxadiene: 1.3 mg/L/20 g/L¼0.06 mg/g glucose (We assumed all glucose in LB medium is consumed).
dFAEE: 647 mg/L/2 g/L¼0.34 g/g glucose.
eFAME: The yield was reported for thraustochytrid Aurantiochytrium sp. strain T66 (as opposed to E. coli).

Results are shown for 1000 iterations of the probabilistic search and one single run of the exhaustive search for each test case. The total number of pathways includes only

those with specific productivities greater than the wild-type organism represented by the base model. The maximal yield refers to the pathway with the highest ratio of

product flux to biomass flux. Product fluxes were calculated using FBA with the constraint that the biomass flux exceeds 80% of the wild-type.
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pathways with lengths less than 10 reactions and the same
highest yield (Table 2).

The similarity of the maximal yields suggested that the two
search methods identified at least partially overlapping sets of
pathways. To evaluate the extent of the overlap, we compared the
yield distributions resulting from the two methods for each test
case (Supplementary Figs. 1–6). In the case of fatty acid methyl
esters (Fig. 8a,b), the yield distributions were essentially identical,
even though the total number of pathways returned by the
probabilistic search was less than 4% of the total returned by
the exhaustive search. Similar trends were observed for all other
test cases, suggesting that the probabilistic search representa-
tively sampled the space of possible pathways in the KEGG
database.

We also compared the yield distributions for fatty acid methyl
esters obtained from different weighting schemes (Figs. 8a,c,d). In
all three cases, similar patterns were generated, suggesting that
there is no correlation between connectivity and yield distribu-
tion. In conclusion, using uniform weighting proves superior in
finding highest-yielding pathways and does not miss some
potential high-yield pathways otherwise undiscovered using
other schemes.
3.3. Runtime comparisons

To examine the computational efficiency of the probabilistic
search, we compared its runtime against the exhaustive search.
The runtime for the exhaustive search grew exponentially with
the number of reactions used in the pathway (Fig. 9), rendering
the algorithm intractable for longer pathways. For example,
a single run of the exhaustive search with a pathway length
limit of 23 was projected to require a runtime exceeding 400
years on a workstation with four Quad-Core 2.3 GHz processors
(AMD Optron 8356) and 64 GB of physical memory. The runtime
for the probabilistic search shows a linear dependence on
the number of reactions in the KEGG database. With the iden-
tical pathway length limit of 23, 1000 iterations of the pro-
babilistic search required a runtime of 6 min on the same
workstation.
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Fig. 8. Yield distributions for fatty acid methyl esters obtained using uniform probabilistic search (a), exhaustive search (b), high-connectivity probabilistic search (c) and

low-connectivity probabilistic search (d). The histograms for the probabilistic searches represent the cumulative results of 1000 iterations. The histogram for the

exhaustive search reflects a single run.
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Fig. 9. Runtimes of the exhaustive search as a function of pathway length

limit. Data shown are for the fatty acid methyl esters test case. Symbols indicate

recorded values from simulations performed on a four Quad-Core 2.3 GHz

AMD Optron 8356 with 64 GB of physical memory. The dashed line extrapolates

the runtimes for length limits up to 23 reactions, which is the maximum

number of steps allowed for the probabilistic search. Extrapolation is performed

based on linear regression of log-transformed runtime data against length

limit.
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3.4. Experimental support

We next examined the quality of the results from the prob-
abilistic search (uniform weighting) by comparing the FBA
calculations against published data on experimentally obtained
yields. In general, direct comparisons of the predicted yields
against published values were not possible. The immediate out-
put of FBA is specific productivity (rate of target production
normalized to dry cell weight) during balanced growth, which
can then be normalized to glucose uptake or another flux.
Typically reported values are volumetric productivity (product
titer and cell density) measurements obtained from shake flask or
fed-batch experiments (Newman et al., 2006; Steen et al., 2010).
In some cases, quantitative details regarding the carbon source
and other culture parameters needed to derive the specific
productivity or yield were not reported. In such cases, represen-
tative values were used based on a survey of the literature. For
example, we used the default value of 0.4 absorbance unit per
gDCW/L to convert the reported OD 600 readings into cell
concentrations. The details of converting the reported titer values
varied from case to case, and are therefore described separately
for each case in the caption of Table 2.

In the case of IPP, the search algorithm identified 11 distinct
pathways, all of which led to higher maximal yields compared to
the native pathway. Comparisons with published data suggested
that the predicted maximal yield is two orders of magnitude
greater than previously observed yields. Similarly large differ-
ences were found between the FBA calculation and reported
values for the other natural product, taxadiene. In the case of
the alcohols and myo-inositol, the FBA results were of comparable
magnitude as previously achieved production rates (Burgard
et al., 2003; Moon et al., 2009; Yan et al., 2009). In the case of
the lipids, comparisons with published values were further
confounded by the generic representation of hydrocarbon side
chains and unspecified stoichiometries of the relevant reactions
in the KEGG database. Computing mass yields was especially
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problematic for synthesis pathways involving chain elongation
reactions catalyzed by multi-functional enzyme complexes such
as fatty acid synthase.

In addition to yield, we also examined the compositions of the
pathways resulting from the probabilistic search. For every test case,
the computational search is able to reconstruct viable pathways
involving reactions whose insertion has been shown to improve the
yield. In the case of IPP, the search results included the mevalonate
pathway, which has been shown to be a preferred synthesis route in
E. coli (Pitera et al., 2007). Two pathways were identified for
taxadiene, one of which started with IPP, as previously shown
in Huang et al. (2001). The other started with farnesylfarnesylger-
aniol and had the same yield. In the case of myo-inositol, several
pathways started from acetyl-CoA as reported in Na et al. (2010). The
search also identified several other pathways that started from D-
glucose-6-phosphate, acetaldehyde, pyruvate, propanoyl-CoA or mal-
onyl-CoA. The highest yield belonged to the pathway which started
with acetyl-CoA. Other identified pathways had slightly less yields.
Only one pathway was identified for 1,3-propanediol, which started
from glycerol, consistent with the analysis in a review (Nakamura
and Whited, 2003). The synthesis pathways for (R,R)-2,3-butanediol
could begin with a variety of metabolites native to E. coli, including
(S)-2-acetolactate, 3-methyl-2-oxobutanoic acid, (R)-2,3-dihydroxy-
3-methylbutanoate (all three had the highest yield), thiamin dipho-
sphate and pyruvate. Of these, the pathway starting from pyruvate
has already been demonstrated experimentally in E. coli (Yan et al.,
2009). Pathways producing fatty acid ethyl esters (FAEEs) started
with different metabolites, including 1,2-diacyl-sn-glycerol with the
highest yield of 3.58 mmol/gDW/h, (3R)-3-hydroxyacyl-[acyl-car-
rier protein], acetyl-CoA, phosphatidylethanolamine, 1-acyl-sn-
glycerol 3-phosphate, 2-acyl-sn-glycero-3-phosphoethanolamine
and phosphatidate, all with lesser yields. Depending on the length
of the desired hydrocarbon side chain, fatty acid methyl esters
(FAMEs) could be produced from various glycerolipids and phos-
pholipids such as (3R)-3-hydroxyacyl-[acyl-carrier protein] with
the highest yield of 1.07 mmol/gDW/h, CDP-diacylglycerol, phos-
phatidylethanolamine, choline, 1,2-diacyl-sn-glycerol, phosphati-
date and 1-acyl-sn-glycerol 3-phosphate. In the case of
triacylglycerol, most pathways involved acyl-CoA (Saha et al.,
2006) starting with (3R)-3-hydroxyacyl-[acyl-carrier protein]
which generated the highest yield of 1.65 mmol/gDW/h, phos-
phatidate, phosphatidylethanolamine and 1-acyl-sn-glycerol
3-phosphate. Other pathways, which did not involve acyl-CoA,
began with CDP-diacylglycerol, choline and 1,2-diacyl-sn-
glycerol.
4. Conclusion

We designed a probabilistic graph-based search algorithm to
identify novel, non-native synthesis pathways for metabolite over-
production using heterologous hosts. Importantly, the algorithm
considers not only the main reactants, but also the cofactors needed
for the biosynthesis. The probabilistic search for pathways is based
on uniform weighting and the degree of metabolite connectivity
determined from the KEGG database. Results demonstrate that
uniform weighting outperforms the connectivity weighting in terms
of average maximum yield with the same number of iterations. The
probabilistic method is much faster (�minutes, independent of the
pathway length) than the exhaustive search algorithm (�years for
the longest pathways) and takes into account all possible pathways
in a probabilistic way.

Using this method, we were able to reproduce experimentally
obtained pathways reported in the literature as in the cases of
IPP, myo-inositol, taxadiene, 1,3-propanediol, (R,R)-2,3-butane-
diol, fatty acid ethyl and methyl esters and triacylglycerol. The
corresponding maximum yields are also comparable with those
reported in the literature. We also compared the yield results of
this method with those of an exhaustive search method which
looks for all possible pathways leading to the target metabolite
production in a higher rate. Our calculations show that for
reasonable number of iterations (�1000 with a runtime on the
order of minutes) the results of both methods are comparable.

Our approach has the potential to be integrated with ensemble
modeling (Contador et al., 2009) to develop a kinetic model or to
be extended based on genomic-scale mapping (Warnecke et al.,
2010). The approach presented in this paper does not consider the
issue of host integration. It is possible that a high-yield pathway
identified by the probabilistic search generates potentially unde-
sirable byproducts or other side effects. It is also possible that the
heterologous genes needed to functionally express the synthesis
pathway interact with the host genome through regulatory
mechanisms (Kim and Reed, 2010). We intend to address this
issue in our future work by investigating the interactions between
the native and added genes.
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